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X-ray Diffraction from Hexagonal Close-Packed Crystals with Deformation Stacking Faults. 
I. Effect of Solute Segregation at Faults in Alloys 

. .  
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The Christian-Gevers theory of X-ray diffraction from homogeneous hexagonal close-packed (h.c.p.) 
crystals with deformation stacking faults is extended to include the effect of segregation of solute atoms 
at the faults. The results show that the breadths of reflexions remain unaffected by solute segregation. 
The ratios of integrated intensities of reflexions with H - K ¢ O  mod 3, L=  1 mod 2 and L = 0  mod 2 
respectively are affected, but only to a small extent, that is, within the limits of possible accuracy in 
experimental measurements of integrated intensity. 

Introduction 

The theory of  X-ray diffraction from h.c.p, crystals 
with deformation stacking faults on the close-packed 
planes was first considered by Ctuistian (1954) and 
Gevers (1954) and subsequently reviewed by Warren 
(1959). An alternative approach to this  problem has 
recently been given by Lele, Anantharaman & Johnson 
(1967). These calculations were made under the fol- 
lowing assumptions: 

(1) The crystal is infinite in size and is free from 
distortion. 

(2) The scattering power is the same for all the close- 
packed planes. 

(3) There is no change in the lattice spacing at the 
faults. 

(4) The faults are distributed at random. 
(5) The faults extend over entire close-packed planes. 
The scattering power for all the close-packed planes 

is obviously the same for the case of pure metals. For 
alloys the scattering power of each plane depends on 
the concentration of the solute in it and should not 
vary under conditions ,of thermodynamic equilibrium. 
However, stacking faults produce localized, regions of 
a different structure and the concentration of the solute 
atoms may therefore differ from that in the rest of the 
crystal under equilibrium conditions (Suzuki, 1952). 
There is thus the possibility of segregation of solute 
atoms at the stacking faults, and the diffraction effects 
arising from this segregation to deformation faults in 
face-centred cubic (f.c.c.) alloys have been described 
by Willis (1959). The present paper deals with the 
theory of  X-ray diffraction by h.c.p, alloys with defor- 
mation stacking faults in which the alloy composition 
at the fault differs from that of the hexagonal matrix. 
The calculations have been made under assumptions 
No. 1 and 3 to 5, listed above. 

Fig. 1 illustrates the sequence of close-packed (0002) 
layers with the faulted positions denoted by F, and fl  
and J~ represent the scattering powers averaged over 
the atoms in the two kinds of layer. When several 

faults occur in succession, the f.c.c, structure is devel- 
oped only at the boundaries of the set, so that segrega- 
tion takes place only at the boundaries. 
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Fig. 1. Stacking sequence of (0002) planes. Faulted positions 
are denoted by F, and the average scattering powers of the 
atoms in the two kinds of layer by fl and ]'2. 

Formulation of the problem 

We employ ordinary hexagonal axes A1, A2 and A3 
(IA31 being twice the interlayer spacing), their recip- 
rocal vectors B1, B2 and B3, the hexagonal indices HKL 
and continuous parameters hb h2 and h3 such that any 
vector S in reciprocal space can be expressed as 

S = hlB1 + h2B2 + h3B3 • 

The diffracted intensity is then given by a single sum- 
mation over all layers (Warren, 1959)" 

c o  

I(h3)=~ n Z? (f~3.fm, 3 exp[idPm])exp[rcimh3], (1) 
m ~ - - o o  

where lif E is a function of hi and hE which vanishes 
except when h~ = H and h2 = K, fro3 and fro, 3 are the 
structure factors of the m3 and m; layers and ~m is 
the phase difference between X-rays scattered through 
H B I + K B 2  by two layers, m3 and m;, which are m 
layers apart. 

Let Pll, P12, P21, P22 be the probabilities that 
layers m3 and m; respectively have atoms of average 
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scattering power J] and fl, f l  and 3~, 3~ and fl, 3~ and 
3~ and let (exp[i~ml)lb (exp[i~ml)a2, (exp[i~m])Zl, 
(exp [i~m])22 be the corresponding values of (exp [i~ra]) 
for all such pairs of layers. Thus 

2 2 
(fins fro, 3 exp [i~m])= Z ,S P~ff;f~( exp [i~m])~. (2) 

i = l j = l  

Introducing 

a -  ( A - A )  _ ( f : - A )  (3) 
( A + A )  ~ f  ' 

one obtains 

(fr%fm, 3 exp [i~ra])=f2{Pl:( exp [/GDm])I 1 

+ P12( exp [i¢m])12+ P21< exp [iq}ra])21 

+ Pzz( exp [i~m])22+ 20"(Pn( exp [i~m])11 

-1='22( exp [iCm])zz)+az(Pn( exp [iCm])l~ 

-PI2( exp [i¢m])x2-PEa( exp [iq~m])21 
+ P22( exp [i¢m])22)} • (4) 

In general, ~m can be expressed as the sum of the 
individual phase shifts, ~0,, across successive layers: 

m" 3 

~m= 27 (ok, (5) 
k=m3+l 

where Cox can take either of the values + (Po and -~00 
where r?0 = (2rc/3) ( H - K ) .  We wish to compute the ex- 
pectation values ( exp [i~m])~y (i,j= 1,2) by considering 
an appropriate random walk in the individual phase 
differences + ¢00. In this random walk a phase difference 
+¢00 (-(Oo) is unaltered with a probability (1 -c0  and 
is changed to -~00 (+  ¢00) with probability ~, where 
is the deformation fault probability. We choose some 
particular plane, m3, as the starting point of the random 
walk and terminate it at some other plane m~ = man t- m. 
Suppose that, counting even and odd planes from the 
plane m3, there a r e  k l  and k2 faults on even- and odd- 
numbered planes respectively, then the net phase dif- 
ference found between the beginning and end of the 
walk will be 

q~a= +~0o [ 1 - ( -  1)m'2 + k a -  k2] 

, ( 6 )  
[ 1 - ( - 1 )  m + k l -  k2] 

¢~ = - Cpo 2 

depending on whether the initial plane is A or B type. 
(A plane is of A type if, in the absence of a fault, the 
phase difference between it and the next succeeding 

plane is +~0o; it is of B type if this phase difference 
is -¢o.) Since (o(-o = q~(+o, we also have 

• A . •  _ mA.n (7 )  (-m) --  ~"(+m) • 

The probability of obtaining a phase difference ~a m 
after m steps is just the probability, P(m, kl,k2), of ob- 
taining kl and k2 faults on the even- and odd-numbered 
planes respectively, multiplied by the probability, P(A), 
of obtaining an A type plane initially: 

P (¢am,k~,k2) = P (m, kl, k2)P (A) 
1 nl! 
2 kl!(n:-kl)! 

n2[ 

k2 !(//2 -- k2) ! 

× ~kl+/C2(1 --  ~ ) m - k l - k 2  , (8) 

where n: and n2 are respectively the number of even- 
and odd-numbered planes and are given by 

m [ 1 - ( - 1 ) m ]  (9a) 
n l = y  +½ 2 ' 

m [ 1 - ( - 1 )  m ] (9b) 
n2= y - ½  2 " 

C a l c u l a t i o n  o f  (fm~fm" s e x p  [i~m]) 
Three cases arise and we shall consider them in turn. 
I. re=O: considering the sequences in Fig.2, we ob- 
tain, since the mth layer is fi-type in the first pair of 
sequences and 3~-type in the last pair: 

P11 = 1 - 2~(1 - ~), (10a) 

P12 = P21 = 0 ,  (1 0b) 

P22 = 2~(1 - ~). (10e) 

Since ~o is always equal to zero, we get 

( exp [i¢o])x: = ( exp [iq~o])22 = 1. (11) 

Substituting from equations (10) and (11) in equation 
(4), we have 

(fm3fm, 3 exp[iq~o])/f2= 1 + - ~  (40 2 -  1 )+a  2 , (12) 

where 
0 2= 1 - 3~(1 - ~ ) .  (13) 

II. m = 1: by considering the eight types of stacking 
sequences illustrated in Fig. 3, we obtain 

PI: = 1 - 3~(1 - c 0 , (14a) 
P12 = P21 = P22 = e(1 - ~). (14b) 

A. ( H - K ) =  0 mod 3. In this case ~1 is equal to zero 

Layer  1 2 3 4 

+1  A A C B 
0 B C B C 

- 1  A A A A 
(1 - oO 2 ~2 (1 - ~ ) ~  oc(1 - oO 

Fig. 2. Different  types of  s tacking sequences for three successive layers and  their  associated probabilities.  
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and hence 
( exp [i~x])~j= 1,  (i,j= 1,2) (15) 

which on substitution in equat ion (4) yields 

(Jm3fm, 3 exp[iqbl])/J'2= 1 + - ~  (402-1)  

0-2 
+ W (4Q2-1 ) '  (16) 

B. ( H -  K) ¢ 0 mod  3. F rom a considerat ion of the 
sequences in Fig. 3, it is clear that  ~ takes either of  
the values + rpo or -~0o with equal probabili ty.  There- 
fore, 

( exp [ i~l])~j= - ½ ,  (i,j= 1,2) . (17) 

Introducing the above values in equat ion (4), we get 

(fmaJ'm % exp t i e d ) I f  2 

~---'-- " 7  0"2 " ~ [ 1 +  ( 4 0 2 - 1 ) +  -~- (402 - 1)] (18) 

III. m > 2 :  it is useful to consider an (m-2) plane 
sequence numbered  f rom 1 to ( m - 1 ) .  At  one end we 
can now add the zero and - l th  planes and at the other 
~he mth and ( m +  1)th. This can be done in any one 

of the sixteen ways illustrated in Fig.4 and with the 
probabil i t ies indicated there. Let the number  of  faults 
in the m-layer sequence be kl + k2 of which kl are on 
even-numbered planes and kz on odd-numbered  ones. 
An ( m - 2 ) - l a y e r  sequence may  therefore contain:  

(i) (k l+k2)  faults so that  the zero and ruth layers 
are added without  introducing further faults;  

(ii) (kl +kz- 1) faults so that  the zero layer is added 
without introducing a further fault  but  the ruth layer 
is faul ted;  

(iii) (k~+kz-1) faults so that  there is a fault  be- 
tween the zero and the 1st layer but  none between the 
( m -  1)th and mth layers;  

(iv) (kl+kz-2) faults so that both the zero and 
ruth layers are added with faults. 

The probabil i t ies for obtaining the above four dis- 
tributions of  stacking faults in an ( m -  2)-layer sequence 
are respectively as follows: 

(i) P(m-2,k2,kx); 
(ii) P(m-2,k2-1,kl) for in even and 

P(m-2,k2,kl-1) for m odd;  
(iii) P(m-2,k2,kl- 1); 
(iv) P(m-2,k2-1,kl-1) for m even and 

P(m-2,kE, kl-2) for m odd. 

Layer [1] [2] [7] [8] 
+ 2  B C A A 
+1 A A C B 

0 B C B C 
- 1  A A A A 

(1  - ¢t) 3 ~3 ~ ( 1  - -  00 2 0 # ( 1  - -  00 

Layer [3] [4] [51 [6] 
+2 C B B C 
+1 A A C B 

0 B C B C 
--1 A A A A 

~(1 - ~)2 ~2(1 -- ~) 0#(1 - 00 0¢(1 - -  ~)2 

Fig. 3. Different types of stacking sequences for four successive layers and the probabilities for their occurrence. 

Layer 
m + l  
m 
m - 1  

+1 
0 

- 1  

[1] 
A A A A 

B C B C 
A A A A 

A A A A 
B B C C 

A A A A 
1 - -  o~ 4 o#(1 -- o02 ct2(1 - -  002  O~ 4 

C B 
B C 

A A 

C C 
B B 

A A 
Ct2(1 - -  0 0 2  0#(1 -- ~)2 

[4] 

B 
A 

C 
A 

tx2(1 -- 002 

B 
C 

A 

B 
C 

A 
~2(1 _ ~ ) 2  

Layer 
m + l  
m 
m - 1  

+1 
0 

- 1  

[2] 
C B C B 

B C B C 
A A A A 

A A A A 
B B C C 

A A A A 
g(1 - g)3 ct(1 - -  Gt) 3 g3(1 -- o 0 g3(1 -- o 0 

A A 
B C 

A A 
C C 

B B 
A A 
0c(1 -- 00 3 0~3(1 -- g) 

[3] 

C 
A 

~(1 - ~)3 

A 
C 

A 
B 

C 
A 

~3(1--~) 

Fig. 4. Different types of sequences for the six layers - 1, 0, + 1, m -  1, m, m + 1, where m > 2, and their probabilities. 
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The probabilities for adding the zero and mth layers 
for the above four cases are respectively ( l - c 0  z, 
(1-c0~,  e ( 1 - e )  and ~z. As a check, it can be easil2~ 
shown that 

P (m, k~, kz) = (1 - o~)2P (m - 2, k2, k~) 
+o~(1 - e ) P ( m -  2, k2-1 ,k i )  
+0~(1 -oOP(m-  2,kz, k l -  1) 
+o~2p(m-2,k2 - 1,k~- 1) for m even 

= (1 - ~ ) 2 P  ( m  - 2, k2, kl) 
+~t(1 - e ) P ( m - 2 , k z ,  k~-  1) 
+a(1 - e )P(m-2 ,kE ,  k l -  1) 
+ct2p(m-2,kE, ka-2)  for m odd.  

(19) 

For the first four sequences in Fig.4, the scattering 
powers of the zero and ruth layers are Ji and 3"1, for 
the next four sequences 3q and 3~, for the next four 
sequences j~ and Ji and for the last four sequences f2 
and J~. Thus 

P11 = (1 - -  (X) 4 -~- 2~2(1 -- ~)2 + (X4, (203) 

P12 = P21 = 2c~(1 - a)3 + 2~3(1 - c0, (20b) 

/°22 ---- 4~2(1 - a)2. (20c) 

A. ( H - K ) = 0  rood 3. In this case also q~ra is equal to 
zero and consequently 

(exp  [i~m])~j= 1, (i,j= 1,2) . (21) 

Substituting the above in equation (4), one obtains 

(fm3fm, 3 exp[i~ml)/f2= 1 + ~- (40 z - 1) . m_>2(22) 

B. ( H -  K) ~ 0 mod 3. A consideration of the -four 
groups of stacking sequences illustrated in Fig. 4 leads 
to expressions for P~j(exp [i~m])~j ( i , j= l ,2) ,  which 
can be concisely written in matrix notation as follows: 

Pl l (exp [i d >,,] 
P12( exp tiq~ml),21 
P21( exp [iqSm])2,[ 
e2z( exp ti~Oml)22_] 

[ ~(1--CX) 3 ~(1--~) 3 ~x3(1-~x) C~3(1--C0 Q2 
~(1-~x) 3 0c3(1-~) ~(1-0030c3(1-00 Q3 ' 

32(1--0~) 2 tX2(1--tX)2C(2(1--¢O 2 a2(1--tX) 2 Q4 

.: (23) 
where 

Q1= ½ 22 22 P(m-2,k2,k~) { exp [i~g.k, lk,] 
+ exp [i~.tq;k2]}, (24a) 

Q2 = ½ 22 22 P ( m -  2,k2-  1,kl) { exp [i~am.k,.k2] 
+ exp [i~b~.klka]} for m even 

= ½ 22 Z P(m-- 2,k2,ka- 1) { exp [i~Am, kl,k2] 
+ exp [i~nm.k,.k2]} for m odd 

, (24b) 

Q3=½ 22 z P ( m - 2 , k 2 , k l -  1) { exp [i~bam.k,.k2] 
+ exp [i¢~Bm.k,.k2]}, (24c) 

Q4 = ½ 22 22 e ( m -  2 , k z -  1 , k , -  1) { exp [i~Am.k,,k2] ] 
+ e x p  [i~)Bm.kl.k2] } for m even [ 

=½ 22 22 P ( m - 2 , k 2 , k l - 2 )  { exp [i~,k,.k2] [ .(24d) 

+ exp [i¢~.kl.k=]} for m odd J 

Substituting from equations (6) and (8) in the above, 
simplifying and then inserting the values of Q1, Q2, Q3 
and 04 in equation (23), we have: 

0 m 
Pl,(exp[i~m]),,= 3605 [(20-1)(1 +30 -02 )  2 

+ ( -  1)ra(2O + 1 ) (1-30-02)21,  (25a) 

P12( exp [iqbm])12=P21 ( exp [i~M)2,=-Ore(1-02) 
360 3 

x[(20-1)  (1+30-02) 

+(-1)m(20+1)  (1 -30-02) ] ,  (25b) 

P22( exp[iqbm])2z- Qm(1 --02)2 
3603 

x [ ( 2 0 - 1 ) + ( -  1)m(20+ 1)1. (25c) 

Substitution of the above in equation (4) yields 

(fr%fra" 3 exp[igOm])/f z= 0 m 
3603 

x {(20- i) [ 3 0 - a ( 2 0 +  1) (0--2)]2+ (-- 1)m(20+ 1) 

x [ 3 0 + a ( 2 0 - 1 ) ( 0 + 2 ) ] 2 } ,  m > 2 .  (26) 

The diffracted intensity 

Expressions for the diffracted intensity can now be 
found by inserting the value of (fmafm, 3 exp [iq~m]) 
from equations (12), (16), (18), (22), (26) in equation 
(1) and these are given below: 

I(h3, H -  K = 0 mod 3) 

{1+ ° 4 2-1,}2exp ] 
+ I//2f2[(202 + 1) + (402-1) cos 7zh3] 

8a 2 
x(1--Qz) • -~} ; (27a) 
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l(h3, H -  K #  0 mod 3) 

= ~ f 2  [_  
- -02)  

302 t 

20"2(202+ 1) (1-02  ) 
902 

40"-2(-4-Q2-1-)--(!-02)- z~h3 ] 
902 COS 

(20 1) [30-a(20+1) (072)] 2 + ~2f2 
3603 

× 
1 - 02 

1 -- 20 cos/rh3 + 02 

+ ~,~'z. (20+ 1) [30+a(20-1)  (0+ 2)12 
3 6 0 3  

1 - - 0  2 

x 1 + 2----0 c o s / z h  3 -a t. 0 2 ° (27b) 

For H ' K = O  rood 3, there is the usual sharp peak at 
h 3 = 0  mod 2. I n  addition, however, there is super- 
imposed on this a broadened peak. The integrated 
intensities for the two are given respectively by 

Ts=2 1 + f f ( 4 0 2 - 1 )  ~zf2 , (28a) 

q9 
T~= 9 (1-02)  (1 + 202)a2~,2f 2 . (28b) 

For H - K # O  m0d 3, there are two broadened peaks 
at h3 = 0 rood 2 and h3 = 1 rood 2 respectively, which 
correspond to the second and third terms in equation 
(27b)~ The first term gives rise to a small broadened 
peak at ha =0  m0d 2. The integrated intensities To and 
/'1 for reflexions at h3 = 0 rood 2 and h3 = 1 mod 2 re- 
spectively can be found by integrating equation (27b) 
within appropriate limits and are given by 

r 2 o - 1  a(402-1)(20-1)  a 2 
To= v2f 2 

[ ~  + 30 18g0 3 

x {zff2804-1803-2302+4)+ 160(402- i)(1 - 02)}], 

(29a) 

T l = ~ 2 f  2 [2Q+l_ a(4Q2-1) (20 + l) a 2 
[ 2Q + 30 ....... + 18zc0 --------3 

x {rc(2804+ 1803--2302+4)+ 160(402- 1) (1--02)}]. 

(29b) 

The ratio R of TI and To, to the first order in ~, is given 
by 

[ l + 2 a ]  
R= TdT0= 3 1 + 2~ "(i ¥~2J " (30) 

The integral breadths fl0 and fll for reflexions with 
h3 = 0 rood 2 and h3 = 1 mod 2 respectively are given by 

3a 
P 0 = & -  2 (31) 

to the first order in 0c and are thus unaffected by seg- 
regation. 

The parameter tr, which depends upon segregation, 
can be found from the experimentally determined R, 
fl0 and fll by first evaluating a from equation (31) and 
then inserting this value in equation (30). This yields 
two values of a, one positive and one negative. Physical 
considerations can now be used to pick out the actual 
value of tr from the two values thus found. 

Normally a may be expected to lie in the range 

-0 .1  < a <  +0.1 

and thus the maximum change in R would be less than 
a quarter per cent even for a=0.1.  Since experimental 
errors in the measurement of R are usually much 
higher, the detection of segregation in a practical situa- 
tion appears to be difficult. On the other hand, it is 
gratifying to know that ~ values aIe not affected by 
segregation of solute atoms to the faults. 
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